Search for CP-violation in $K_S \to 3\pi^0$ decays with the NA48 detector

Nicolò Cartiglia

INFN, Turin, Italy

Received: 13 October 2003 / Accepted: 6 January 2004 / Published Online: 6 February 2004 – ⓒ Springer-Verlag / Società Italiana di Fisica 2004

Abstract. The decay $K_S \rightarrow 3\pi^0$ is forbidden by CP conservation. Using a sample of more than 6 million $K \rightarrow 3\pi^0$ decays, the NA48 Collaboration has improved the limit on $\eta_{000} = A(K_S \rightarrow 3\pi^0)/A(K_L \rightarrow 3\pi^0)$ and on the branching ratio $Br(K_S \rightarrow 3\pi^0)$ by about one order of magnitude. Using this result and the Bell-Steinberger relation, a new limit on the equality of the K^0 and \bar{K}^0 masses is obtained improving by about 40% the test of CPT conservation in the mixing of neutral kaons.

1 Introduction

The NA48 experiment was optimized to measure the value of $Re(\epsilon t/\epsilon)$, i.e. the ratio of *direct* over *indirect* CP violation in the kaon sector [1,2]. It took data between 1997 and 2001. The data taken during this period have been also used to perform a variety of other measurements of CP violation (η_{ooo} and K_{e3} charge asymmetry), mass and lifetime (K and η mass, K lifetime) and kaon and hyperon rare decays [3].

2 The NA48 detector

The NA48 experiment is a fixed target experiment which uses two concurrent and quasi overlapping beams of kaons, Fig. 1. One kaon beam (called FAR beam) is produced 126 m upstream the other beam and by the time it reaches the decay region all its K_S mesons have decayed away. The second kaon beam (called NEAR beam) is produced only 6 m before the decay region and therefore contains both K_S and K_L . The kaons are produced by a primary 450 GeV (400 GeV in 2001) proton beam (~ $1.5 \cdot 10^{12}$ per spill on the FAR target and $\sim 3. \cdot 10^7$ on the NEAR target) impinging on a 400 mm long, 2 mm diameter rod of beryllium. Charged particles from decays are measured by a magnetic spectrometer composed by four drift chambers with a dipole magnet between the second and third one which introduces a momentum kick of 265 MeV/c in the horizontal plane. The space point resolution is $\sim 95 \mu m$ and the momentum resolution is $\sigma(p)/p = 0.48\% \oplus 0.009\% * p[GeV]$ (2001 values). The spectrometer is followed by a liquid kripton calorimeter 27 radiation length long with an energy resolution of $\sigma(E)/E = (3.2 \pm 0.2)\%/\sqrt{E \oplus (9 \pm 1)\%/E \oplus (0.42 \pm 0.05)\%}.$ The detector is complemented by an hadronic calorimeter, a muon detector, fast hodoscopes for triggering, a proton

Fig. 1. The beam structure of the NA48 experiment

tagging system, beam monitors. A full description can be found in [1,2].

3 The kaon system

The K^0 , \bar{K}^0 flavour eigenstates are created by strong interaction. These states mix and propagate as mass eigenstates, K_S and K_L , which are a superposition of CP eigenstates: K_S is a quasi pure CP = 1 state and K_L a quasi pure CP = -1 state, Table 1. There is therefore a mismatch between the CP and the mass eigenstates which allows both K_S and K_L to decay into states of opposite CP.

Consider now the decay $K \to 3\pi^0$. Let's calculate the P, C and I values of a $|3\pi^0\rangle$ state. The parity is given by $P|3\pi^o\rangle = (-1)^l(-1)^L(-1)^3|3\pi^o\rangle$ where l is the angular momentum of a pair of π^o , L is the angular momentum of the third π^o with respect of this pair and $(-1)^3$ is the intrinsic parity of a $|3\pi^0\rangle$ state. Since the total angular momentum is J = 0 then l = L and $P|3\pi^o\rangle = (-1)^{2l}(-1)^3|3\pi^o\rangle = -|3\pi^o\rangle$. The charge conjugation operation on a π^o does not change its state, $C|\pi^o\rangle = |\pi^o\rangle$ so we have $C|3\pi^o\rangle = (+1)^3|3\pi^o\rangle =$ $+|3\pi^o\rangle$. The isospin values of a $|3\pi^0\rangle$ state are I=1

Eigenstate	expression	CP value
Strong	$ar{\mathrm{K}}^{0}~(ar{ds}),~\mathrm{K}^{0}~(dar{s})$	
CP	$K_1 \propto ({ m K}^0 ~+ { m ar K}^0 ~)$	+1
CP	$K_2 \propto ({ m K}^0 ~- {ar { m K}}^0 ~)$	-1
Mass	$K_S \propto K_1 + \epsilon K_2$	Almost $+1$
Mass	$K_L \propto \epsilon K_1 + K_2$	Almost -1

Table 1. Kaon Eigenstates

Fig. 2. $K_S \rightarrow 3\pi^0$ and $K_L \rightarrow 3\pi^0$ decay mode

and I=3, which are both symmetric. The total wavefunction $|3\pi^0\rangle = |spin\rangle |space\rangle |isospin\rangle$ must be symmetric (three identical bosons) so both isospin values are allowed (the $|spin\rangle |space\rangle$ component, with S = 0and l + L = 0 is of course symmetric). We have then: $CP|3\pi^o\rangle = -|3\pi^o\rangle$ with $K_L \rightarrow 3\pi^0$ a CP conserving decay and $K_S \rightarrow 3\pi^0$ a CP violating decay, both with $\Delta I = 1/2, 5/2$, Fig. 2.

4 η_{ooo}

In order to quantify the strength of CP violation in the $K_S \rightarrow 3\pi^0$ decay the following quantity has been introduced [4]:

$$\eta_{ooo} = \frac{A(\mathbf{K}_{\mathrm{S}} \to 3\pi^{0})}{A(\mathbf{K}_{\mathrm{L}} \to 3\pi^{0})}.$$
(1)

Assuming CPT invariance, using the Wu-Yang phase convention $(Im(a_0) = 0 \rightarrow \epsilon = \tilde{\epsilon})$ and ignoring transition into I=3 final states η_{ooo} can be rewritten as:

$$\eta_{ooo} = \epsilon + i \frac{Im(a_1)}{Re(a_1)} \tag{2}$$

where a_1 is the weak amplitude for K^0 to decay into I=1 final states and ϵ can be derived from the $K_L \rightarrow \pi\pi$ decay. In 2 $Re(\eta_{ooo}) = Re(\epsilon)$ so it's only the immaginary part which is sensitive to direct CP violation.

5 The method

Given the very small (still unknown) branching fraction it's very hard to measure directly the decay $K_S \rightarrow 3\pi^0$. However, it's possible to see it's presence since it interferes

Fig. 3. Interference pattern for different values of η_{ooo} normalized to $K_L \rightarrow 3\pi^0$

with the much larger decay $K_L \rightarrow 3\pi^0$: given a $K_S + K_L$ beam, the intensity of $3\pi^o$ decay is given by

$$I_{3\pi^{o}}(t) \propto \underbrace{e^{-\Gamma_{L}t}}_{K_{L} \text{ decay}} + \underbrace{|\eta_{ooo}|^{2}e^{-\Gamma_{S}t}}_{K_{S} \text{ decay}}$$
$$+ 2D(p)[Re(\eta_{ooo})cos\Delta mt - Im(\eta_{ooo})sin\Delta mt]e^{0.5(\Gamma_{S} + \Gamma_{L})t}$$

interference
$$K_S - K_L$$

where $D(p) = N(\mathbf{K}^0 - \bar{\mathbf{K}}^0)/N(\mathbf{K}^0 + \bar{\mathbf{K}}^0) \sim 0.35$, the dilution factor, parametrizes the \mathbf{K}^0 , $\bar{\mathbf{K}}^0$ production asymmetry as a function of the kaon momentum. The maximum interference is at the target and most of the effect is contained within the first 2 K_S lifetime. The interference pattern is superposed over a large $\mathbf{K}_{\mathrm{L}} \rightarrow 3\pi^0$ signal and it can be positive or negative depending on the value of η_{ooo} , Fig. 3. The technique used for the measurement is therefore the following: 1) measure the intensity of $K \rightarrow 3\pi^0$ decay in the K_S + K_L beam as a function of proper K_S time, 2) measure the same intensity for a pure K_L beam, 3) correct the two intensities for small differences between beams and systematic effects, 4) calculate the ratio of intensities and fit the interference term.

6 Data sample

This analysis have been performed using the data taken during the 2000 run. A sample of $6 \cdot 10^6 K_S + K_L \rightarrow 3\pi^0$ decays from the NEAR target and $\sim 10^7 K_L \rightarrow 3\pi^0$ decays from the FAR target have been collected, Fig. 4. To extract η_{ooo} a fit to the ratio of the NEAR/FAR samples is performed in kaon energy bins (75 < E_K < 150 GeV). Table 2 shows the sources of systematic errors. The systematics are dominated by uncertainties in the detector acceptance, accidental activity and the K⁰, \bar{K}^0 dilution.

7 Results and discussion

The result of the simultaneous fit to all energy bins is:

$$Re(\eta_{ooo}) = -0.026 \pm 0.01_{stat}$$

Fig. 4. $K \to 3\pi^0$ decays from the FAR and NEAR target in unit of K_S proper time

 Table 2. Source of systematic errors

	Re $\eta_{ooo}(10^{-2})$	$\mathrm{Im} \ \eta_{ooo}(10^{-2})$
Accidentals	± 0.1	± 0.6
Energy scale	± 0.1	± 0.1
Dilution	± 0.3	± 0.4
Acceptance	± 0.3	± 0.8
Binning	± 0.1	± 0.2
Total	± 0.5	±1.1

$$Im(\eta_{ooo}) = -0.034 \pm 0.01_{stat}$$
$$Br(K_{\rm S} \to 3\pi^0) < 1.4 \cdot 10^{-6} \ 90\% CL.$$

The values of $Re(\eta_{ooo})$ and $Im(\eta_{ooo})$ have a correlation coefficient of 0.8. According to 2 the constrain $Re(\epsilon) = Re(\eta_{ooo})$ can be used in the fit changing the results to:

$$Im(\eta_{ooo}) = -0.012 \pm 0.007_{stat} \pm 0.011_{sys}$$
$$Br(K_{\rm S} \to 3\pi^0) < 3.0 \cdot 10^{-7} \ 90\% CL.$$

Fig. 5. Fit results for η_{ooo} assuming or not $Re(\epsilon) = Re(\eta_{ooo})$

Table 3. Results from other experiments

Exp.	Year	Technique	Result
FNAL-E621	1994	$K^{0} - \bar{K}^{0}$	Im $\eta_{+-o} = -1.5 \pm 1.7 \pm 2.5 \cdot 10^{-2}$
		incoherent	
CERN	1998	$p - \bar{p} \rightarrow K^- \bar{K}^0 \pi^+$	Re $\eta_{+-o} = -2 \pm 7^{+4}_{-1} \cdot 10^{-3}$
CPLEAR		$\rightarrow K^+ \bar{K}^0 \pi^-$	Im $\eta_{+-o} = -2 \pm 9^{+2}_{-1} \cdot 10^{-3}$
Barmin	1983	Bubble ch.	Re $\eta_{000} = -8 \pm 18 \cdot 10^{-2}$
et al.			Im $\eta_{000} = -5 \pm 27 \cdot 10^{-2}$
CERN	1998	$p - \bar{p} \rightarrow K^- \bar{K}^0 \pi^+$	Re $\eta_{ooo} = 18 \pm 14 \pm 6 \cdot 10^{-2}$
CPLEAR		$\rightarrow K^+ \bar{K}^0 \pi^-$	Im $\eta_{000} = 15 \pm 20 \pm 3 \cdot 10^{-2}$
Novosibirsk	1999	Tagged K_s	$Br(K_S \rightarrow 3\pi^0) < 1.4 \cdot 10^{-5}$
SND		$ee \rightarrow \phi \rightarrow \mathrm{K_S}\mathrm{K_S}$	

Figure 5 shows these numbers while Table 3 lists the results of other experiments. NA48 has improved the precision of both η_{ooo} and $Br(K_S \rightarrow 3\pi^0)$ by an order of magnitude.

7.1 The Bell-Steinberger relation

Consider a kaon state, superposition of K_S and K_L , $|K(t) \rangle = a_S K_S + a_L K_L$. Conservation of probability requires that the time derivative of this state is equal to the sum of the decay rates [5]:

$$-\frac{d}{dt}| < K(0)|K(0) > |^{2} = \sum |a_{s}A(\mathbf{K}_{S} \to f) + a_{L}A(\mathbf{K}_{L} \to f)|^{2}.$$

This relation can be rewritten as:

$$(1 + i \tan(\phi_{SW}))[Re(\epsilon) - i Im(\Delta)] = \sum \alpha_f$$

with $tan(\phi_{SW}) = 2\Delta m/(\Gamma_S - \Gamma_L)$, $\alpha_f = 1/\Gamma_S A^*(K_S \rightarrow f)A(K_L \rightarrow f)$ the possible decays $(K_L \rightarrow \pi\pi, K_S \rightarrow 3\pi^0...)$ and Δ the magnitude of CP violation with CPT violation. This identity therefore constrains CPT via the value of $Im(\Delta)$ which, with the new value of $\alpha_{ooo} = \frac{\tau_L}{\tau_L}\eta_{ooo}Br(K_L \rightarrow 3\pi^0)$, is reduced by almost 40%:

$$Im\Delta = (2.4 \pm 5.0) \cdot 10^{-5} \rightarrow Im\Delta = (-1.2 \pm 3.0) \cdot 10^{-5}.$$

 $Im(\Delta)$ is now limited by the knowledge of η_{+-} . Assuming CPT this result can be converted into a new limit on the K^0 , \bar{K}^0 mass difference:

$$m_{\mathbf{K}^0} - m_{\bar{\mathbf{K}}^0} = (-1.7 \pm 4.2) \cdot 10^{-19} GeV/c^2.$$

References

- 1. V. Fanti et al.: Phys. Lett. B 465, 335 (1999)
- 2. A. Lai et al.: Eur. Phys. J. C 22, 231 (2001)
- 3. R. Arcidiacono: SUGRA conference 2003
- 4. Review of particle physics: Eur. Phys. J. 15, 513 (2000)
- 5. G.B. Thomson and Y. Zou: Phys. Rev. D 51, 1412 (1995)